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Noise-induced sidebranching in the three-dimensional
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We consider the time-dependent behavior of sidebranching deformations taking into account the
actual nonaxisymmetric shape of the needle crystal. The Green’s function of the linearized problem
is presented by a functional integral with the help of the Mullins-Sekerka local spectrum. For the
short-wavelength perturbations the functional integral can be calculated by the steepest descent
method, where the Green’s function behavior is determined by the extremal trajectories governed
by Hamilton equations. The local spectrum plays the role of the Hamilton’s function. As in the
axisymmetric approach [J.S. Langer, Phys. Rev. A 36, 3350 (1987)], noise-induced wave packets
generated in the tip region grow in amplitude, and spread and stretch as they move down the sides of
the dendrite producing a train of sidebranches. The amplitude grows exponentially as a function of
(12|%/®/0'/?), where |Z| is the distance from the dendritic tip and o is the stability parameter. The
important result is that the amplitude of the sidebranches for the anisotropic needle crystal grows
faster than for the axisymmetric paraboloid shape [in the latter case it grows exponentially but only
as a function of (|Z |1/ 4/0'/%)]. We argue that this effect can resolve the puzzle that experimentally
observed sidebranches have much larger amplitudes than can be explained by thermal noise in the
framework of the axisymmetric approach. The coarsening behavior of sidebranches in the nonlinear
regime is briefly discussed.
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I. INTRODUCTION

During the past few years, our understanding of pat-
tern formation in various nonlinear dissipative systems
has made remarkable progress. Building on these founda-
tions, it has now become possible to develop a description
of a large class of patterns that are found in diffusional
growth. Recently, much progress has been made on the
question of what determines the structure of dendritic
crystals [1]. It has become clear that the degeneracy of
the macroscopic problem (family of Ivantsov parabolas
[2]) is lifted by surface tension acting as a singular per-
turbation. Most surprisingly, this selection mechanism
is beyond all orders of perturbation theory; therefore, it
requires a rather sophisticated analysis to reveal its work-
ing. One outcome of this theory is the critical importance
of crystalline anisotropy. But a physical anisotropy, say,
with an underlying cubic symmetry, will give rise to a
nonaxisymmetric crystal shape in three-dimensional (3D)
dendritic growth. This makes the problem more difficult
to solve compared with the two-dimensional (2D) case.

Recently, an analytical theory of the needle crystal in
the 3D dendritic growth has been developed by Ben Amar
and Brener [3] and by Brener [4]. The term “needle crys-
tal” came from the idea that the crystal shape should be
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close to the Ivantsov paraboloid. It turned out to be true
only in the tip region of the dendrite [4]. The cross section
of the interface in the tail region is represented by four
well-developed (for cubic anisotropy ) arms. The length
and width of the arms increase as |z|3/% and |2|?/5, respec-
tively, where |2| is the distance from the dendritic tip (in
contrast with paraboloid, where the radius of the cross
section increases as |z|'/2 ). This intermediate asymp-
totics should hold as long as the diffusion length for the
side growth of the arms is larger than the size of the
arms, before a subsequent crossover to the classical con-
stant velocity regime of the 2D dendritic growth of the
arms. In this last regime the length of the arms increases
as |z|. This anisotropic crystal shape agrees reasonably
well with the experimental observations [5-8].

Clearly, this steady-state solution [4] does not account
for the noise-induced sidebranching behavior. The de-
scription of this behavior necessitates the solution of
a time-dependent problem for the noise-induced per-
turbation about the needle-crystal shape. Langer and
co-workers [9-11] suggested that dendritic sidebranches
might be generated by selective amplification of a very
small, noisy perturbation near the tip of a growing needle
crystal. It appeared that realistic sidebranching behavior
might be produced by purely thermal fluctuations in the
solidifying material. The original argument [9] was based
on the local boundary model of solidification, but later
[11], all results were presented in terms of the more re-
alistic, fully nonlocal, 3D model of solidification. In con-
trast to the boundary-layer model, the nonlocal model is
based on a completely realistic description of the thermal
field; thus, thermal fluctuations have been added to the
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problem in a very elegant and rigorous way.

The basic result presents the way in which a local-
ized disturbance grows and propagates down the side
of the dendrite. This disturbance is described in [11]
as a small (linear) perturbation moving on a cylindri-
cally symmetric steady-state needle crystal (Ivantsov
paraboloid). The wave packet continues to grow at ar-
bitrarily large distances down the dendrite. In the lin-
ear approximation, growth is exponential, but the ex-
ponent is proportional to |z|1/ 4. The small power law
is the result of the fact that only components of lower
and lower frequency in the initial pulse continue to grow
unstably as |z| becomes large. These results are in ap-
proximate, qualitative agreement with available exper-
imental observations [5,6], but experimentally observed
sidebranches have much larger amplitudes than explica-
ble by thermal noise in the framework of the axisym-
metric approach [11]. It means that either the thermal
fluctuation strength turns out not to be quite adequate
to produce visible sidebranching deformations, or agree-
ment with experiment would require at least one more
order of magnitude in the exponential amplification fac-
tor.

The main aim of this paper is to describe the side-
branching problem taking into account the actual non-
axisymmetric shape of the needle crystal. Brener [4] has
already mentioned that the amplification factor depends
on the needle-crystal shape and for the actual nonax-
isymmetric shape this factor should be larger, because
the length of the main arms grows as |z|3/5, which is
faster than |z|'/2 for Ivantsov paraboloid. We will show
that this idea allows one to remove the above-mentioned
discrepancy between the theory and experiment. We also
want to focus on the analytic aspects of this theory be-
cause they turn out to be very interesting, especially for
the nonaxisymmetric problem. We use the analytic ap-
proach which has been developed in Ref. [12] and which
is slightly different from the approach of Refs. [10,11].
The starting point of this approach is the representation
of the Green’s function of the linear operator by a func-
tional integral with a help of the local spectrum of the
operator [13]. For the short-wavelength perturbations
the functional integral can be calculated by the steep-
est descent method, where the Green’s function behavior
is determined by the extremal trajectories governed by
Hamilton equations. The local spectrum plays the role
of the Hamilton’s function in this mechanical analogy. In
this approach we can take advantage of the local spec-
trum of our problem; it is just the well-known Mullins-
Sekerka spectrum. For the already investigated 2D and
3D axisymmetric cases, both approaches [10,11] and [12]
give the same results.

II. FORMULATION OF THE PROBLEM

Let us study the problem of a free dendrite growing in a
one-component undercooled melt. The control parameter
is the dimensionless undercooling A = (Tas — Two)cp/ L,
where Ty is the melting temperature, L the latent heat,
and ¢, the specific heat. The temperature field satis-

fies the diffusion equation with the interface moving with
normal velocity v, and acting as a source of magnitude
vpL/cp. Together with the Gibbs-Thomson condition at
the interface, it leads to a rather complicated integral-
differential evolution equation.

The steady-state version of this problem has been dis-
cussed in Refs. [3,4]. The dendritic tip with the radius of
curvature p moves at a constant velocity v. The Peclet
number P = pv/2D (D is the thermal diffusivity) is re-
lated to the undercooling A by the 3D Ivantsov formula
[2], which reads for small A

P(A)=-A/InA. (1)
The stability parameter o is given by
o = do/(Pp) = o* (), (2)

where dy = yTarcp/L? is the capillary length propor-
tional to the isotropic part of the surface energy v and
a is the strength of the crystalline anisotropy. The func-
tion o*(a) is given by the 3D selection theory [3] and
o*(a) o a’/* for small a. Relation (2) together with
the Ivantsov relation (1) determines both v and p. The
interface shape in the tip region is close to the Ivantsov
paraboloid and can be described by the equation [14]

2(r,¢) = _% + Z A, r™ cos(mg), (3)

with the amplitudes A,, given by the 3D selection the-
ory [3]. It is convenient from the beginning to measure
all lengths in units of p and all times in units of p/v.
In the tail region the interface shape deviates from the
Ivantsov paraboloid: four well-developed arms (for cubic
symmetry) are formed in the cross section. For small A,
not too far from the tip, this shape can be described as

[4]

1 ds 4
x T/Teip 82/3\/1—84’ ( )

where the tip position of the arm z;, is given by

Tip(2) = (512|/3)/%(03 /o™)V/°. (5)

The function o} () is given by the 2D selection theory
and the ratio 03 (a)/0* () is independent of « in the limit
of small . This means that the shape (4),(5) in the tail
region is almost independent of the material and growth
parameters, as well as the shape (3) in the tip region (if
all the lengths are reduced by p).

A. Green’s function of propagating perturbations

The description of the sidebranches necessitates the
solution of a time-dependent problem for the perturba-
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tion about the missile-shaped steady-state crystal z =
Co(z,y). As in Ref. [11], we assume this perturbation to
be small and consider its evolution in the linear approx-
imation. Therefore, the first step in this analysis is to
linearize the evolution equation about the steady-state
i

solution. For the investigation of the behavior of a noise-
induced wave packet as it moves along the dendrite it
is important to know the Green’s function of our linear
problem. According to Ref. [13], the Green’s function is
given by a path integral,

¢ X
G(X,Y,t, X'\ Y' t') = /exp [/t.' Uz, y, ks, ky)dr — z/ kydz — z/:’, kydy} D{z(7)} D{y(7)}

xD{ks(7)} D{ky(7)}.

Here the functional integration is performed over all the
trajectories z(7), y(7), kz(7), and ky(7), which start at
the point z = X',y = Y’ at 7 = t’ and come to the
point £ = X,y =Y at 7 = t. The Green’s function G
describes the perturbation of the interface at an arbitrary
point X,Y,Z = (o(X,Y) at time ¢t as a response to the
initially d-localized perturbation of the interface at the
point X', Y, Z' = (o(X',Y’) at time ¢'.

The expression for the Green’s function is of the Feyn-
man type, but with the action

X Y
k.dz — z/ kydy (7)
X Y!

t

S =/ Qz,y, ke, ky)dr — 3

4
written in the Hamiltonian rather than in the Lagrangian
form. In this representation all important information
about the problem is contained in the local dispersion re-
lation Q(z,y, k5, ky) of the linear operator. This function
plays the role of the Hamilton’s function in the indicated
mechanical analogy.

In the WKB approximation the functional integral can
be calculated by the steepest descent method, where the
Green’s function behavior is determined by the extremal
trajectory governed by the Hamilton equations

de _ 09 dy _ .00

dr = "ok, dr ok’
(8)

dk, .09 dk, _ .8Q

dr ‘9z dr T oy
This approximation is valid if the action S..: at the ex-
tremal trajectory is large. Thus, the Green’s function is
just G ~ exp(Sezt) and the problem is reduced to the so-
lution of the Hamilton equations for the given Hamilton’s
function Q(z,y, ks, ky). Of course, this set of nonlinear
Hamilton equations may still be difficult to solve.

B. Local dispersion relation

The important point is that the local dispersion rela-
tion for this solidification problem is just the well-known
local Mullins-Sekerka spectrum. Let us replace the inter-
face of the needle crystal in the vicinity of its arbitrary
point z,y, 2 = {o(z,y) by a piece of its tangential plane.
For the short-wavelength perturbation of the form

'

(6)

on ~ eﬂt e—ik.s—ikuu’

the local Mullins—Sekerka spectrum is

Q = k2+k2 [cos© —o(k?+k2)] + ik, sin®. (9)

Here © is the angle between the z axis and the local
normal 7; k; and k, are components of a wave vector
along § and 4; § and @ are the unit orthogonal vectors in
the tangential plane; the unit vector § lies in the tangen-
tial plane and in the normal plane (n,z). The first two
terms in Eq. (9) describe the Mullins-Sekerka unstable
spectrum for the perturbation of an initially flat interface
moving with the normal velocity cos ©, with account be-
ing taken of the surface energy. The last term takes into
account the tangential component of the velocity of lig-
uid (sin ©) with respect to the unperturbed interface in
the frame of reference moving with the dendritic tip with
the velocity equal to 1.

C. Transformation to Cartesian coordinates

The spectrum (9) is presented in the local orthogonal
frame of reference n, s, u. It is convenient to rewrite it in
the fixed Cartesian coordinates. The unit vectors 7, §,4
have the following projections on the Cartesian coordi-
nates (z,y, z):

7= (sin® cos¢p , sin® singp , cosO) ,
8= (cos® cosyp , cosO siny , —sinO) , (10)
4= (sinp, —cosp, 0),

where ¢ is the angle between the x axis and the projec-
tion of the normal # on the (x,y) plane.

The profile of the needle crystal is given by the equa-
tion

z = CO(wvy)' (11)

For this profile

1 [ 3
sin © VPP ta

cos® = ————, = )
/1+p2+q2 /1+p2+q2
(12)
_ —p . —q
cosp = ——————, singp =

P+’
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where p = 8(o/8z, ¢ = 8(o/dy. (We consider the part of
the profile where © and ¢ are positive.)

Let us introduce k. and k, instead of k, and k,, using
the invariance of the scalar product:

kods + kydu = kydz + k,dy, (13)

where

and df = (dz,dy,dz = pdz + qdy). Thus we obtain k&,
and k, in terms of k; and ky:

_ k. + qky
(p2 + q2)1/2 (1 +p2 + q2)1/2 ’
—qks + pk,

ky = CEroi (14)

The substitution of Egs. (12) and (14) into Eq. (9) yields
the dispersion relation Q(z,y, kz, ky).

ky =

D. Approximations

Let us formulate the set of self-consistent approxima-
tions which we will use in the following analysis.

(i) We consider the behavior of G at the large distances
from the tip, |Z| > 1. Eventually, this ensures the ap-
plicability of the above-mentioned WKB approximation.

(ii) On the other hand, according to Ref. [11], the ef-
fective noise is localized within a small region near the
tip. This happens simply because the fluctuations that
occur near the tip are the ones that have grown most by
the time they are observed at the distance |Z|. Thus,
we consider the source point to be located on the tip:
X'=Y"=0.

(iii) The main restriction of our calculation comes
from the fact that any further analytical progress can
be reached only for small values of y, i.e., close to the
tip of the main arm in the cross section (Fig. 1). In this
region the unperturbed interface of the needle crystal,
which is given by Egs. (4) and (5), can be written as

==

FIG. 1. The cross section of the dendrite.

2
Gleh™® - o =

(312)"*

Here we have omitted the factor [0} (a)/0*(a)]*/® in (4)
and (5), which is very close to 1.

As shown below, the actual values of k(1) ~ y(7) are
also small in the region of small y. For small y and k,,
we can expand the function 2 to the second-order terms:

Yy
T, |z—|2/g<<1. (15)

Q(m,y, kzsky) = Qo(w,km) +Ql(zay,kzaky)? (16)
where
1, 2 1,2
Qi(z,y, kzr ky) = 3 Ay® + Byk, + 3 Ck, . (17)
Here Qg, A, B, and C are the functions of  and k. only.

Straightforward but tedious calculations give for z > 1
(or |z| > 1) the following equations:

_; 2 .
Q = ks [1+iak;‘” + i] , (18a)
Po Po Do
2 2 .
A= Tk [1 + 3k ﬁ}, (18b)
Do Po Po
kz
B=—i[1+30”+—1~], (18¢)
Do Po Po
1 30k2
C = — |1 z|, 18d

where

Po = (8Co/0)y—0s b= (8%Co/8Y%)ym0.

These equations are derived for an arbitrary profile with
extremum at y = 0 and they are valid for | po | > 1. For
our profile [Eq. (15)]

po = —z%/®, b= 223 (19)
Using the approximation of small y and k,, we can solve

the Hamilton equations analytically by an iterative pro-
cedure.

III. SOLUTION OF THE HAMILTON
EQUATIONS

After substitution of Eqgs. (16) and (17) into Egs. (8),
we obtain

e 0% _ 1. 204 — vk 9B _ likzac
ar = 'or, 2%¥ ok,  "Yor, ~ 2"vok,’
(20)
W _ _iBy—iCk, (21)
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o = 1Ay + iBk,. (22)
Instead of the equation dk./dr = 10Q/0x, we use the
relation (16) and the fact that for a Hamiltonian system
Q does not depend on time 7 and depends on the initial
and final points of the trajectory only. Thus, we can
present this relation in the form:

Qo(, ka) + %Ayz—i—Byky—}— %Cki — QX,Y,t). (23)

We would like to find the optimal trajectory, that is,
four unknown functions z(7), y(7), kz(7), and ky(7),
which are governed by Eqs. (20)—(23) and by four bound-
ary conditions: z(0) = X' =0, y(0) =Y’ =0, z(t) = X,
and y(t) = Y. In order to do this we use the following
iterative strategy:

(i) The first step is to solve these equations for the case
y(7) = 0 and k,(7) = 0. This gives the trajectory z(7),
k. (7) along the ridge of the side arm.

(ii) The second step is to find y(7), ky(7) for the fixed
functions z(7) and k. (7) given by the first step.

(iii) Finally, we find the corrections to z(7), k. (7) due
to the functions y(7), ky(7) given by the second step.

First of all, according to this strategy, we solve the
problem for y(7) = 0, ky(7) = 0. From Eqgs. (18a), (20),
and (23), we find

ke = ipoQ (1 —i/po + ic Q2) (24)
and
dz 1 7 _
- = - = 1+——i3092>. 25
dr Do ( Do ( )

Here and below we use the smallness of the parameter
1/po and the fact that 0©? turns out to be of the order
of 1/pe. For the subsequent calculations, we often need
the main approximation only:

-~ dz
ky ~ ipefl, — =~ —1/po. 26
ipof?, 2 o —1/p, (26)
The next step consists in the solution of the oscillator
equations (21) and (22). We can derive one equation for
y(7) from the two equations (21) and (22),

.G :_i54+inl) -
j-GI-y(AC—B*—iB+iBZ) = 0, (27)

where the dot denotes the derivative with respect to 7.
This equation can be solved in the WKB approximation.
The asymptotic solution for large 7 satisfying the condi-
tion y(t) =Y is given by the relation

~ y L) ex Tw ) dr'
wr) = ¥ I e | [Cwenar|, s
where

wi(r) = AC—Bz—iB+iBg (29)

and the prefactor f(7) obeys the equation

;1 W o]
f+§f(—'—'c_)=0- (30)

w

In order to calculate w we use the relations (18b,c,d) and
(26). In the approximation, where we drop terms ¢/po in
(18b,c), the frequency w2 = AC — B? = 0. With these
i/po terms we get

AC — B2 = —b/pd. (31)

woe =

Calculating the additional terms in Eq. (29) in the main
approximation, we find

w = wOﬂ ’
' db 2 _ 1/2

Now, from Eq. (21), we find the following relation be-
tween ky(7) and y(7):

(32)

(8-1)

bk, :
ky(r) = y(r) — (1 —¢ ————F—
!l( ) y( ) Do [ Po(l — 30 szo)

|- e

For the obtained asymptotic solution (33) we calculate
Qll

db) v2k, (34)

1, ., 1,. .
== ~Ck?Z = — .
Q 2Ay + Byk, + 20 v z(d:c 202
Now we consider Egs. (20) and (23) for k, and dx/d7 in
the first approximation with respect to y2:

g; = —plo [1+pio—i3a(zz—%] (35)
and
ke = ipofd [1— 1—)%-!—1'0(224- % (%) ;”—E] . (36)
The integration of Eq. (35) gives
—t = (o(X,0) [1+1i30Q%] —iX
+ /0 t(ﬂbzyz/po) (dz/dr) dr. (37)

Using Eq. (28), we calculate the last integral in Eq. (37)
in the main approximation (wt ~ |po| > 1). In this
case the main contribution to the integral comes from its
upper limit. Finally it gives

—t = (o(X,0) [1+1i30Q%] —iX + %sz (1-¢), (38)
where € ~ 1/po.

IV. ACTION AT THE EXTREMAL
TRAJECTORY

Now we can calculate the action S as defined by Eg.

(7)a
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. x Y
S(X,Yt) = t—i / ko da — i / k,dy.  (39)
(1] 0

Using relations (33), (36), and (38), we find

X t
—1,'/ k,,de—i/ ko [ 22 )ar
0 0 dr

= Q{{O(X, 0) (1 +i0Q?)

. 1{db\Y3?p,y
—i1X + 1 (E) —ﬁb_} (40)

(Y [t dy
—zL kydy=—z/o ky (E dr

= lbmﬂ [1 _ + 102
2 Po

and

P G N
po(1 — 30Q2po)

1({db\ p
D5 o

Finally, one obtains for S:

S(X,Y,t) = Q{—iCO(X, 0) 2002
1 2[ i o
+=-bY“|le — — + 100
2 Po
. (B-1)
i o 30021)0)] } . (42)

Equation (38) defines Q2 as a function of X,Y and t:

_ X i8 € bY?
2 — e g
XYY = — 3 Ta@ 0] {1+X ‘3 X }
(43)
where
§ = t+(o(X,0)+ %sz. (44)

Equations (42)—(44) are the main results and provide the
expression for the action and, thus, for the Green’s func-
tion of the perturbation of an arbitrary steady-state crys-
tal shape.

It is more convenient to present S as a function of Z,Y
instead of X,Y. Using the shape equation (15), we get
the action for our problem. A lengthy but straightfor-
ward calculation yields

§? 9 Y?

- 3a Y2
2 Xo(Z) 8 X2(Z) 4 x3(z) (V 1_’/9"1) T2 Xg/a(Z)}’

(45)

5 3/5
Xo(Z) = (§|Z|> , 6 =t+2Z,

9/10 .
S(Z,Y,t) = 2(5/3) |z '2/5 14 3 i 3
3V 30
where
and

a = -—Rel:3i( 1—i/9—1) - —2% —l}-—zﬁ]

= 0.039381.

Substituting X¢(Z) and § =t— | Z |, we find

2(5/3)(9/10)

.3
S(Z,v,t) = T3 | Z |?/® {1—%—25

3/5 6/5
3 t-1z]) _ 3 (3 t—12))*
5 | Z |3/5 8 \5 | Z |8/5

7
Y? 3a (3 /8 Y(t—|Z)) 16
Z[#s 2 \5 [z |75 | (46)

4/5
9 (3 -
)7 (),
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In order to obtain this relation we have expanded Eqgs.
(42) and (43) in the small parameters

t— | Z Y?
'(—I-Z'||—37¥ <1 and |_Z—|4_/_5 L1 (47)
to the quadratic terms with respect to the first parameter
and to the linear terms with respect to the other one. In
the written terms, the € correction [see Eqs.(42)and(43)]
does not appear at all. It appears only in the term pro-
portional to Y2(t — |Z|)%, which describes the weak de-
pendence of a correlation length on Y. We have not
written the term iY2(t — |Z|), which corresponds to the
weak dependence of the wavelength of oscillation on Y.

V. SIDEBRANCHES AS A RESPONSE
TO THERMAL FLUCTUATIONS

After the calculation of the action S at the optimal
trajectory, we can write the Green’s function as

G ~ exp(S), (48)

where a prefactor comes from the functional integration
over the space close to the optimal trajectory. The noise-
induced correction £;1(Z,Y,t) to the interface shape [the
profile is described by the relation X = Xo(Z,Y) +
§1(Z,Y,t)] is given by the general relation

t

G(Z,Y,t) = / dz'dy’ /

— 00

xn(Z',Y',t'), (49)

at'G(2,Y,t,2',Y",t')

where 7 is a stochastic field of noise at the interface. For-
mally, 7 is the inhomogeneous term in the linear equation

L£1 =

where L is a linear operator which has the local spectrum
(9) and the Green’s function G.

The appropriate procedure for introducing thermal
noise into a system of this kind is to add a fluctuat-
ing heat source to the thermal diffusion equation. The
autocorrelation function for the source is chosen so as
to reproduce the known thermodynamic fluctuations of
the diffusion field. This procedure is described in detail
by Langer in [11]. Let us just review here a few main
points. The main contribution to the integral (49) over
space variables Z',Y’ comes from the tip region. This
happens simply because the fluctuations that occur near
the tip are ones that have grown most by the time they
are observed at the point |Z|. Unfortunately, we can-
not compute accurately the dependence of the Green’s
function on the source point, at least not by means of
the WKB approximation that we have been using so far.
Langer mentioned that all the missing information from
the Green’s function can be incorporated into a single
numerical factor. Another point is that the fluctuations
can be described by a white noise on the time scale of
our problem.

Assuming the integration over space variables Z' )Y’
is performed, we can write

azv.y ~ [ L WGz Ye-t) ). (50)
Here G is given by Egs. (46), (48) and
() = 0 and (n(t1)n(t2)) = Q%4(t1 —t2), (51)

where the fluctuation strength @ is given in ref. [11] as

2k3TchD

o= (52)

From Eqgs. (50) and (51), we find the correlation function

(6120, Y1) 61(Z0, Ya)) ~ QF / T ata(z, v, 1)
o

XG(Zz,Yg,t). (53)

For coinciding points (Z; = Z, = Z,Y1 = Y, = Y),
we obtain the root-mean-squared amplitude for the side-
branches generated by thermal fluctuations,

2(5/3)°/10
3v30

-2 () iy

Y2
Tz
Comparing Eq. (54) and Eq. (3.19) in Ref. [11],
we conclude that the prefactor can be written as
QC o'/%g(Z,Y), where C(~ 1) denotes the group of un-
determined constant prefactors. The function g(Z,Y")
describes a weak dependence of the prefactor on the co-
ordinates and, for example, for the paraboloid shape,
this function behaves as [Z|3/1¢ [11] and remains of order
unity even far from the tip.
The estimation for the double-point correlation func-
tion at the points (Z,,Y = 0) and (Z2,Y = 0) gives for
Zl >~ Z2 ~ 7

(€1(21,0) £1(Z2,0)) = (£3(Z1,0))'/2 (£3(Z2,0))"/2

X €OS l:—————zw(zl — Zz)]

@@y~ Qe | |2

(54)

A

X exp [_ (_‘?L—__Zl)_z , (55)

202

where

5 3/10
e§=4(§) V3o|Z|*®

(56)
A=2r (%)3/10 V3a|Z|V/5.
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VI. DISCUSSION

Equation (54) describes an increase in the ampli-
tude with the growth of the distance from the tip |Z|.
This amplitude grows exponentially as a function of
(|1Z|3/%/o'/?). At a fixed distance, |Z| = const, the am-
plitude slightly decays and oscillates with Y. The impor-
tant result is that the amplitude of the sidebranches for
the anisotropic needle grows faster than for the axisym-
metric paraboloid shape. In the latter case it grows ex-
ponentially as a function of (|Z|'/4/a1/2) [11]. We think
that this effect can resolve the puzzle that experimentally
observed sidebranches have much larger amplitudes than
can be explained by thermal noise in the framework of
the axisymmetric approach [11]. Agreement with experi-
ment would require at least one more order of magnitude
in the exponential amplification factor. Indeed, we find
that, for experimental values of ¢ = 0.02 and |Z| where
the first clear sidebranches can be seen [5], the ratio be-
tween the amplification factors for the actual anisotropic
shape and the parabolic shape is

7 for |Z|=7
exp(Sanis)/ exp(Sparab) =~ { 11 for IIZ |l= 9.

The correlation length (or the width of the wave
packet) £. and the sidebranch spacing A predicted by (56)
depend on the distance from the tip |Z|. These depen-
dencies are slightly different from those predicted by the
axisymmetric approach [11], but the difference is not so
crucial as the difference between the amplitudes, which
grow exponentially with |Z|. For example, at the exper-
imentally relevant distances |Z| = 7-9 where the first
clear sidebranches can be seen, the spacing predicted by
(56) A ~ 2.0, which is in approximate agreement with ex-
perimental observations and with the spacing predicted
by the axisymmetric approach [11] as well. As noted by
Langer [11], the position at which the sidebranches ap-
pear (become visible) and their initial spacing depend
(logarithmically) on the strength of the noise, and both
are predicted to diverge slowly in the limit of small noise
or small Peclet numbers P.

Far down from the tip the sidebranching deformations
grow out of the linear regime and eventually start to
behave like dendrites themselves. It is clear that the
branches start to grow as free steady-state dendrites only
at the distances from the tip which are of the order of
the diffusion length, which, in turn, is much larger than
the tip radius p in the limit of small P. It means that
there exists the large range of Z, 1 < |Z| < 1/P, where
the sidebranches grow already in the strongly nonlinear
regime, but they do not behave as free dendrites yet. We
can think of some fractal object where the length and
thickness of the dendrites and the distance between them
increase according to some power laws with the distance
from the tip |Z|. The dendrites in this object interact due

to the competition in the common diffusion field. Some
of them die and some continue to grow in the direction
prescribed by the anisotropy. This competition leads to
the coarsening of the structure in such a way that the dis-
tance between the surviving dendrites A(Z) is adjusted
to be of the same order of magnitude as the length of the
dendrites [(Z). In order to find the characteristic lengths
of this structure we use the scaling arguments similar to
those of Ref. [15]. First of all, we estimate the temper-
ature field far away from the dendrite with sidebranches
as the far field for the Ivantsov paraboloid [2],

A
U~ In(Ar).
This formula is valid for |z| < r < 1/A, where (r,z) are
the cylindrical coordinates. The total heat flux per unit
length of the main dendrite is equal to ¢ ~ —27DA/In A.
On the other hand, this flux is equal to the total heat re-
lease due to the growth of the branches, g ~ 4p? 4 (Is/)).
Here t is time, t = |Z|p/v, and s(Z) is the characteristic
area of the cross section of a branch, the factor 4 is due to
the fourfold symmetry (we remind that all the lengths are
measured in units of the tip radius of the main dendrite
p). As in Ref. [15], we assume the selection relation for
the sidebranches to be the same as for a free dendrite [see
Eq.(2)], 2Ddo/(vep?) = o*, where the branch tip radius
P ~ ps/l. Combining all these relations together and
taking into account that A ~ ! and v, = pdl/dt, we find
that the distance between the sidebranching dendrites,

their length and the branch cross section area grow as
1Z1,

X(Z) ~ 1(Z) ~ 5(Z) ~ |Z|.

This result is self-consistent with our estimation of the
temperature field at the large distances » > |z|. Thus,
in this fractal object, the survived branches behave al-
most as free dendrites, but the coarsening takes place.
The whole dendritic structure with sidebranches looks
like a fractal object on the scale smaller than the diffu-
sion length and as a compact object on the scale larger
than the diffusion length [16]. The mean density of a solid
phase in the compact structure is equal to undercooling
A.
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